Matrix transformations related to I-convergent sequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Transformations from Absolutely Convergent Series to Convergent Sequences as General Weighted Mean Summability Methods

We prove the necessary and sufficient conditions for an infinity matrix to be a mapping, from absolutely convergent series to convergent sequences, which is treated as general weighted mean summability methods. The results include a classical result by Hardy and another by Moricz and Rhoades as particular cases.

متن کامل

Lacunary I-Convergent Sequences

In this article we introduce the concepts of lacunary Iconvergent sequences. We investigate its different properties like solid, symmetric, convergence free etc.

متن کامل

Matrix Transformations of Starshaped Sequences

We deal with matrix transformations preserving the starshape of sequences. The main result gives the necessary and sufficient conditions for a lower triangular matrix A to preserve the starshape of sequences. Also, we discuss the nature of the mappings of starshaped sequences by some classical matrices. 2000 Mathematics Subject Classification. 40C05, 40D05, 40G05.

متن کامل

CONVERGENT SUBSEQUENCES FROM SEQUENCES OF FUNCTIONS ( i )

Let \yA be a sequence of functions, y. e TlseSE where S is a nonempty subset of the /-dimensional Euclidean space and 77 is an ordered vector space with positive cone X . If y, £"sfji,i sufficient conditions are given that \y A have a subsequence \hA such that for each t e S the sequence {A.(i)| is monotone for k sufficiendy large, depending on i. If each E is an ordered topological vector spac...

متن کامل

Application to Matrix Transformations

Given any sequence τ = (τn)n≥1 of positive real numbers and any set E of complex sequences, we write Eτ for the set of all sequences x = (xn)n≥1 such that x/a = (xn/an)n≥1 ∈ E. We define the sets Wτ = (w∞)τ and W 0 τ = (w0)τ , where w∞ is the set of all sequences such that supn (n −1∑n m=1 |xm|) < ∞, and w0 is the set of all sequences such that limn→∞ (n−1 ∑n m=1 |xm|) = 0. Then we explicitly c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta et Commentationes Universitatis Tartuensis de Mathematica

سال: 2019

ISSN: 2228-4699,1406-2283

DOI: 10.12697/acutm.2018.22.16